

 Navigation

 	
 index

 	
 next |

 	HTTP Prompt 0.9.2 documentation

HTTP Prompt Documentation

HTTP Prompt is an interactive command-line HTTP client featuring autocomplete
and syntax highlighting, built on HTTPie [https://httpie.org] and prompt_toolkit [https://github.com/jonathanslenders/python-prompt-toolkit].

See it in action:

[image: Asciinema] [https://asciinema.org/a/96613?theme=monokai&size=medium&autoplay=1&speed=1.5]

Contents

	User Guide
	Installation

	Quickstart

	Output Redirection
	Saving and Loading Sessions

	Saving HTTP Respones

	Pipeline

	Shell Substitution

	Configuration

	Persistent Context

	Contributor Guide
	Forking

	Working with virtualenv

	Installing Dependent Packages

	Installing Test Dependent Packages

	Making Your Changes
	Code Style

	Adding Features

	Python 2 and 3 Compatibility

	Documentation

	Running Tests
	Single Python Version

	Multiple Python Versions

	Code Review

	Sponsors
	$2+

Roadmap

	Support for advanced HTTPie syntax, e.g, field=@file.json

	Support for cURL command and raw format preview

	Improve autocomplete

	Python syntax evaluation

	HTTP/2 support

User Support

We’d love to hear more from our users! Please use the following channels for
bug reports, feature requests, and questions:

	GitHub issues [https://github.com/eliangcs/http-prompt/issues]

	Gitter chat room [https://gitter.im/eliangcs/http-prompt]

Contributing

Are you a developer and interested in contributing to HTTP Prompt? See
Contributor Guide.

Sponsoring

If HTTP Prompt has been helpful for your team or you individually, consider
making a pledge [https://www.patreon.com/eliangcs] to support this project.

Thanks

	HTTPie [https://httpie.org]: for designing such a user-friendly HTTP CLI

	prompt_toolkit [https://github.com/jonathanslenders/python-prompt-toolkit]: for simplifying the work of building an interactive CLI

	Parsimonious [https://github.com/erikrose/parsimonious]: for the PEG parser used by this project

	pgcli [http://pgcli.com]: for the inspiration of this project

	Contributors [https://github.com/eliangcs/http-prompt/graphs/contributors]: for improving this project

	Sponsors: for supporting this project

 Copyright 2016, Chang-Hung Liang.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	HTTP Prompt 0.9.2 documentation

User Guide

Installation

Just install it like a regular Python package:

$ pip install http-prompt

You’ll probably see some permission errors if you’re trying to install it on
the system-wide Python. It isn’t recommended. But if that’s what you want to
do, you need to sudo:

$ sudo pip install http-prompt

Another alternative is to use --user option to install the package into
your user directory:

$ pip install --user http-prompt

To upgrade HTTP Prompt, do:

$ pip install -U http-prompt

Quickstart

To start a session, you use the http-prompt executable:

Start with the last session or http://localhost:8000
$ http-prompt

Start with the given URL
$ http-prompt http://httpbin.org

Start with some initial options
$ http-prompt localhost:8000/api --auth user:pass username=somebody

Once you’re in a session, you can use the following commands.

To change URL address, use cd:

Relative URL path
> cd api/v1

Absolute URL
> cd http://localhost/api

To add headers, querystring, or body parameters, use the syntax as in HTTPie [https://httpie.org].
The following are all valid:

Header
> Content-Type:application/json

Querystring parameter
> page==2

Body parameters
> username=foo
> full_name='foo bar'

Body parameters in raw JSON (new in v0.9.0)
> number:=1234
> is_ok:=true
> names:=["foo","bar"]
> user:='{"username": "foo", "password": "bar"}'

Write them in one line
> Content-Type:application/json page==2 username=foo

You can also add HTTPie [https://httpie.org] options like this:

> --form --auth user:pass
> --verify=no

HTTPie options and request parameters in one line
> --form --auth user:pass username=foo Content-Type:application/json

To preview how HTTP Prompt is going to call HTTPie [https://httpie.org], do:

> httpie post
http --auth user:pass --form POST http://localhost/api apikey==abc username=john

You can temporarily override the request parameters by supplying options and
parameters in httpie command. The overrides won’t affect the later
requests.

No parameters initially
> httpie
http http://localhost

Override parameters temporarily
> httpie /api/something page==2 --json
http --json http://localhost/api/something page==2

Current state is not affected by the above overrides
> httpie
http http://localhost

Since v0.6.0, apart from httpie command, you can also use env to print
the current session:

> env
--verify=no
cd http://localhost
page==10
limit==20

To actually send an HTTP request, enter one of the HTTP methods:

> get
> post
> put
> patch
> delete
> head
> options (new in v0.8.0)

The above HTTP methods also support temporary overriding:

No parameters initially
> httpie
http http://localhost

Send a request with some overrided parameters
> post /api/v1 --form name=jane

Current state remains intact
> httpie
http http://localhost

To remove an existing header, a querystring parameter, a body parameter, or an
HTTPie [https://httpie.org] option:

Remove a header
> rm -h Content-Type

Remove a querystring parameter
> rm -q apikey

Remove a body parameter
> rm -b username

Remove an HTTPie option
> rm -o --auth

To reset the session, i.e., clear all parameters and options:

> rm *

To exit a session, simply enter:

> exit

Output Redirection

New in v0.6.0.

You can redirect the output of a command to a file by using the syntax:

Write output to a file
> COMMAND > /path/to/file

Append output to a file
> COMMAND >> /path/to/file

where COMMAND can be one of the following:

	env

	httpie

	HTTP actions: get, post, put, patch, delete, head,
options

Saving and Loading Sessions

One of the use cases of output redirection is to save and load sessions, which
is especially useful for team collaboration, where you want to share your
sessions with your team members.

To save your current session, you redirect the output of env to a file:

> env > /path/to/file

To load a saved session, you can use source or exec. Their only
difference is that exec wipes out the current session before loading.
Usage:

Update the current session
> source /path/to/file

Wipe out the current session and load from a file
> exec /path/to/file

Saving HTTP Respones

Printing HTTP responses to the console is good for small text responses. For
larger text or binary data, you may want to save the response to a file. Usage:

Save http://httpbin.org/image/png to a file
> cd http://httpbin.org/image/png
> get > pig.png

Or use this one-liner
> get http://httpbin.org/image/png > pig.png

Pipeline

New in v0.7.0.

HTTP Prompt supports simplified pipeline syntax, where you can pipe the output
to a shell command:

Replace 'localhost' to '127.0.0.1'
> httpie POST http://localhost | sed 's/localhost/127.0.0.1/'
http http://127.0.0.1

Only print the line that contains 'User-Agent' using grep
> get http://httpbin.org/get | grep 'User-Agent'
 "User-Agent": "HTTPie/0.9.6"

On macOS, you can even copy the result to the clipboard using pbcopy:

Copy the HTTPie command to the clipboard (macOS only)
> httpie | pbcopy

Another cool trick is to use jq [https://stedolan.github.io/jq/] to parse JSON data:

> get http://httpbin.org/get | jq '.headers."User-Agent"'
"HTTPie/0.9.6"

Note: Syntax with multiple pipes is not supported currently.

Shell Substitution

New in v0.7.0.

Shell substitution happens when you put a shell command between two backticks
like `...`. This syntax allows you compute a value from the shell
environment and assign the value to a parameter:

Set date to current time
> date==`date -u +"%Y-%m-%d %H:%M:%S"`
> httpie
http http://localhost:8000 'date==2016-10-08 09:45:00'

Get password from a file. Suppose the file has a content of
"secret_api_key".
> password==`cat ./apikey.txt`
> httpie
http http://localhost:8000 apikey==secret_api_key

Configuration

New in v0.4.0.

When launched for the first time, HTTP Prompt creates a user config file at
$XDG_CONFIG_HOME/http-prompt/config.py (or %LOCALAPPDATA%/http-prompt/config.py
on Windows). By default, it’s ~/.config/http-prompt/config.py (or
~/AppData/Local/http-prompt/config.py).

config.py is a Python module with all the available options you can
customize. Don’t worry. You don’t need to know Python to edit it. Just open it
up with a text editor and follow the guidance inside.

Persistent Context

New in v0.4.0.

HTTP Prompt keeps a data structure called context to represent your current
session. Every time you enter a command modifying your context, HTTP Prompt
saves the context to your filesystem, enabling you to resume your previous
session when you restart http-prompt.

The last saved context is located at $XDG_DATA_HOME/http-prompt/context.hp
(or %LOCALAPPDATA%/http-prompt/context.hp on Windows). By default, it’s
~/.local/share/http-prompt/context.hp (or ~/AppData/Local/http-prompt/context.hp).

As context data may contain sensitive data like API keys, you should keep the
user data directory private. By default, HTTP Prompt sets the modes of
$XDG_DATA_HOME/http-prompt to rwx------ (i.e., 700) so that the
only person who can read it is the owner (you).

Note for users of older versions: Since 0.6.0, HTTP Prompt only stores the
last context instead of grouping multiple contexts by hostnames and ports like
it did previously. We changed the behavior because the feature can be simply
replaced by env, exec and source commands. See the discussion in
issue #70 [https://github.com/eliangcs/http-prompt/issues/70] for detail.

 Copyright 2016, Chang-Hung Liang.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	HTTP Prompt 0.9.2 documentation

Contributor Guide

This document is for developers who want to contribute code to this project.
Any contributions are welcome and greatly appreciated!

This project follows the common conventions of a Python/GitHub project. So if
you’re already an experienced Python/GitHub user, it should be straightforward
for you to set up your development environment and send patches. Generally, the
steps include:

	Fork and clone the repo

	Create a virtualenv for this project

	Install dependent packages with pip install -e .

	Install test dependent packages with pip install -r requirements-test.txt

	Make your changes to the code

	Run tests with pytest and tox

	Commit and push your changes

	Send a pull request

	Wait to be reviewed and get merged!

If you’re not familiar with any of the above steps, read the following
instructions.

Forking

Fork is a term invented by GitHub. It means copy someone else’s project to
your account, so you can make changes without interfering with the original
project.

To fork HTTP Prompt, just click the Fork button on HTTP Prompt’s GitHub
project page. Then you clone your fork to your local computer:

$ cd ~/Projects
$ git clone git@github.com:{YOUR_USERNAME}/http-prompt.git

Read Forking Projects [https://guides.github.com/activities/forking/] on GitHub to learn more.

Working with virtualenv

virtualenv is the de facto standard tool when developing a Python project.
Instead of polluting your system-wide Python installation with different Python
projects, virtualenv creates an isolated Python environment exclusively for a
Python project.

There are several tools you can use for managing virtualenvs. In this guide,
we’ll show you how to use pyenv [https://github.com/yyuu/pyenv] and pyenv-virtualenv [https://github.com/yyuu/pyenv-virtualenv], which is one of the
most popular virtualenv management tools.

Make sure you have installed pyenv [https://github.com/yyuu/pyenv] and pyenv-virtualenv [https://github.com/yyuu/pyenv-virtualenv] first.

HTTP Prompt should work on Python 2.6, 2.7, 3.3, 3.4, and 3.5. You can use any
of these Python versions as your development environment, but using the latest
version (3.5.x) is probably the best. You can install the latest Python with
pyenv:

$ pyenv install 3.5.2

This will install Python 3.5.2 in ~/.pyenv/versions/3.5.2 directory. To
create a virtualenv for HTTP Prompt, do:

$ pyenv virtualenv 3.5.2 http-prompt

The command means: create a virtualenv named “http-prompt” based on Python
3.5.2. The virtualenv can be found at ~/.pyenv/versions/3.5.2/envs/http-prompt.

To activate the virtualenv, do:

$ pyenv activate http-prompt

This will switch your Python environment from the system-wide Python to the
virtualenv’s (named “http-prompt”) Python.

To go back to the system-wide Python, you have to deactivate the virtualenv:

$ pyenv deactivate

Refer to pyenv [https://github.com/yyuu/pyenv] and pyenv-virtualenv [https://github.com/yyuu/pyenv-virtualenv] if anything else is unclear.

Installing Dependent Packages

The dependent packages should be installed on a virtualenv, so make sure you
activate your virtualenv first. If not, do:

$ pyenv activate http-prompt

It is also recommended to use the latest version of pip. You can upgrade it
with:

$ pip install -U pip

Install HTTP Prompt with its dependent packages:

$ cd ~/Projects/http-prompt
$ pip install -e .

pip install -e . means install the http-prompt package in editable mode
(or developer mode). This allows you to edit code directly in
~/Projects/http-prompt without reinstalling the package. Without the -e
option, the package will be installed to Python’s site-packages directory,
which is not convenient for developing.

Installing Test Dependent Packages

Test requirements are placed in a separate file named requirements-test.txt.
To install them, do:

$ cd ~/Projects/http-prompt
$ pip install -r requirements-test.txt

Making Your Changes

Code Style

Always lint your code with Flake8 [http://flake8.pycqa.org/en/latest/index.html]. You can set it up in your code editor or
simply use flake8 in the command line.

The Hitchhiker’s Guide to Python [http://docs.python-guide.org/en/latest/] provides the best Python coding practices.
We recommend anyone who wants to write good Python code to read it.

Adding Features

Before you add a new feature, make sure you create an issue making a proposal
first, because you don’t want to waste your time on something that the
community don’t agree upon.

Python 2 and 3 Compatibility

HTTP Prompt is compatible with Python 2 and 3. Keep in mind that you’re coding
for Python 2 and 3 at the same time. You can use Tox [https://tox.readthedocs.io/en/latest/] (see below) to make sure
the code is runnable on both Python 2 and 3.

Documentation

Documentation is written in Sphinx [http://www.sphinx-doc.org/]. To build documentation, you need to
install Sphinx [http://www.sphinx-doc.org/] first:

$ pip install sphinx

To build and view documentation in HTML, do:

$ cd ~/Projects/http-prompt/docs
$ make html
$ open _build/html/index.html

Running Tests

Single Python Version

Make sure your virtualenv is activated. To run tests, do:

$ cd ~/Projects/http-prompt
$ pytest

pytest runs the tests with your virtualenv’s Python version. This is good
for fast testing. To test the code against multiple Python versions, you use
Tox [https://tox.readthedocs.io/en/latest/].

Multiple Python Versions

All the commands in this section should NOT be run in a virtualenv.
Deactivate it first if you’re in a virtualenv:

$ pyenv deactivate

Make sure you have installed all the Python versions we’re targeting. If not,
do:

$ pyenv install 2.6.9
$ pyenv install 2.7.12
$ pyenv install 3.3.6
$ pyenv install 3.4.5
$ pyenv install 3.5.2
$ pyenv install pypy-5.3.1
$ pyenv install pypy3-2.4.0

To use Tox [https://tox.readthedocs.io/en/latest/] with pyenv [https://github.com/yyuu/pyenv], you have to instruct pyenv to use multiple Python
versions for the project:

$ cd ~/Projects/http-prompt
$ pyenv local 3.5.2 3.4.5 3.3.6 2.7.12 2.6.9 pypy-5.3.1 pypy3-2.4.0

This will generate a .python-version in the project directory:

$ cat ~/Projects/http-prompt/.python-version
3.5.2
3.4.5
3.3.6
2.7.12
2.6.9
pypy-5.3.1
pypy3-2.4.0

This tells pyenv [https://github.com/yyuu/pyenv] to choose a Python version based on the above order. In this
case, 3.5.2 is the first choice, so any Python executables (such as python
and pip) will be automatically mapped to the ones in
~/.pyenv/versions/3.5.2/bin.

We want to run tox using on Python 3.5.2. Make sure you have installed
Tox [https://tox.readthedocs.io/en/latest/]:

$ pip install tox

To run tests, execute tox:

$ cd ~/Projects/http-prompt
$ tox

Tox [https://tox.readthedocs.io/en/latest/] will install the test Python environments in the .tox/ directory in
the project directory, and run the test code against all the Python versions
listed above.

Code Review

Once you made changes and all the tests pass, push your modified code to your
GitHub account. Submit a pull request (PR) on GitHub for the maintainers to
review. If the patch is good, The maintainers will merge it to the master
branch and ship the new code in the next release. If the patch needs
improvements, we’ll give you feedback so you can modify accordingly and
resubmit it to the PR.

 Copyright 2016, Chang-Hung Liang.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	HTTP Prompt 0.9.2 documentation

Sponsors

$2+

	Tara Yeung

Want your company logo or your name to be put on this page? Become a sponsor
on Patreon [https://patreon.com/eliangcs].

 Copyright 2016, Chang-Hung Liang.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	HTTP Prompt 0.9.2 documentation

Index

 Copyright 2016, Chang-Hung Liang.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		HTTP Prompt 0.9.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Chang-Hung Liang.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

